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ABSTRACT: Disrupted vasculature and high energy-demand by regenerating
tissue results in wound hypoxia. Wound repair may be facilitated by oxygen
therapy. Evidence supporting the mode of action of hyperbaric oxygen in pro-
moting wound healing is sketchy, however. Topical oxygen therapy involves
local administration of pure oxygen. The advantages of topical oxygen therapy
include low cost, the lack of systemic oxygen toxicity, and possibility of home
treatment. While this modality of wound care is of outstanding interest, it
clearly lacks the support of mechanism-oriented studies. The search for mech-
anisms by which oxygen supports wound healing has now taken another step.
Respiratory burst—derived oxidants support healing. Oxidants serve as cellu-
lar messengers to promote healing. Although this information is of outstanding
significance to the practice of oxygen therapy, it remains largely unexplored.
The search for “natural remedies” has drawn attention to herbals. Proantho-
cyanidins or condensed tannins are a group of biologically active polyphenolic
bioflavonoids that are synthesized by many plants. Proanthocyanidins and
other tannins facilitate wound healing. A combination of grape seed proantho-
cyanidin extract and resveratrol facilitates inducible VEGF expression, a key
element supporting wound angiogenesis. Strategies to manipulate the redox
environment in the wound are likely to be of outstanding significance in wound
healing.
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INTRODUCTION

Wound-healing abnormalities cause great physical and psychological stress to
affected patients and are extremely expensive. Disrupted vasculature and high
demand for energy to support processing and regeneration of wounded tissue are
typical characteristics of a wound site. Low oxygen supply and high demand results
in hypoxia. Oxygen delivery is a critical element for the healing of wounds. 1-3In the
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presence of poor blood flow, the availability of oxygen to the wound site is thought
to be a rate-limiting step in early wound repair. Indeed, transcutaneous oxygen
(TcPO,) alone is able to reliably estimate probability of healing in an ischemic
extremity.* The time line of wound healing is altered by various local conditions,
such as inflammation and neuropathy; however, the most important factor regulating
the regional time line of healing is blood flow. Factors that can increase oxygen
delivery to the regional tissue, such as supplemental oxygen, warmth, and sympa-
thetic blockade, can speed hf:aling.s’6 Intermittent oxygen therapy has been shown
to promote collagen synthesis and is beneficial for producing the extracellular matri-
ces that support wound healing.”

HYPERBARIC OXYGEN THERAPY

Wound repair can often be facilitated by increasing the partial pressure at which
oxygen is supplied to wounds.? Clinical experience with adjunctive hyperbaric oxy-
gen therapy in the treatment of chronic wounds® has shown that wound hyperoxia
increases wound granulation tissue formation and accelerates wound contraction and
secondary closure.”10 Nevertheless, the physiological basis for this modality
remains largely unknown. Such ignorance adversely affects our ability to establish
definitive criteria for the selection of patients and also to predict success in treat-
ment. To date, there are few clinical studies that attempt to define the fundamentals
underlying hyperbaric oxygen therapy. Hyperbaric studies have been criticized for
the lack of well-defined wound care protocols, the absence of precise wound-healing
measures, and poorly defined wound healing endpoints.!! Evidence supporting the
mode of action of hyperbaric oxygen in promoting wound healing is sketchy at best.
For example, hyperbaric oxygenation above 2 atmospheres inhibits proliferation of
fibroblasts and keratinocytes in cell monolayer cultures (e.g., a 10-day treatment at
3 atmospheres appeared cytostatic to keratinocytes). In contrast, hyperbaric treat-
ment up to 3 atmospheres dramatically enhances keratinocyte differentiation, and
epidermopoiesis in complete human skin equivalents.!2

Hyperbaric oxygen therapy includes two key components: high (2-3 atm) pres-
sure and close to 100% oxygen. What is the relative contribution of the pressure and
oxygen factors? Do we need a combination of both for successful wound therapy or
is normobaric oxygen treatment good enough? In the case of an exposed dermal
wound, is it important to administer oxygen systematically or is topical oxygen
applied locally to the wound site effective? While there are many opinions about
these important questions, at present we do not have any firm evidence-based scien-
tific conclusions. Systemic oxygen therapy is contraindicated in numerous situations
and poses significant risk to organs such as the eye, brain, and lung. Under certain
circumstances, negative pressure oxygen therapy has been claimed to be more effec-
tive than hyperbaric oxygen therapy.13 A reasonable evaluation of the risk:benefit
ratio of systemic oxygen therapy in the treatment of wound healing would require
mechanism-oriented translational research.
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TOPICAL OXYGEN THERAPY

Topical oxygen therapy represents a less explored modality in wound care.!* Pure
oxygen is locally administered to an affected region of the body at 1.03 atmospheres
of pressure and can be done in the patient’s own home (see FIGURE 1). It is indicated
for the treatment of open wounds. The advantages of topical oxygen therapy include
low cost, the lack of systemic oxygen toxicity, possibility of home treatment, and
effectiveness, allowing this treatment to be prescribed for many patients early in the
course of their disease rather than as a last resort.!> Systemic hyperbaric therapy
requires that patients be placed in special chambers in the presence of trained phy-
sician specialists with the delivery of oxygen in the chamber at 2-3 atmospheres of
pressure. Whether topical oxygen therapy has similar efficacy as systemic hyperbar-
ic oxygen therapy remains to be established. A few brief studies have reported the
effects of topical oxygen therapy on wound healing. These studies are mostly obser-
vational and do not address underlying mechanisms.'®~18 It is claimed that topical
oxygen alone or in combination with a low power laser may be useful to treat dia-
betic foot ulcers.'” On the basis of prospective randomized clinical studies it has
been inferred that topical oxygen therapy represents a cost-effective approach?? to
promote wound angiogenesis.21 If indeed topical oxygen therapy emerges as a suc-
cessful therapeutic modality in the treatment of wounds, it could significantly
decrease the cost of caring for chronic wounds and substantially broaden the scope
of patients eligible for treatment.

A RADICAL HYPOTHESIS IN SUPPORT OF OXYGEN THERAPY

The search for the mechanisms by which oxygen exerts its vital functions in
wound healing has evolved another step. Reactive oxygen species (ROS, includes
oxygen-derived radical as well as non-radical oxidants), often loosely termed *“oxi-
dants,” are a vital part of healing.2223 Oxygen is the rate-limiting factor for activa-
tion of NADPH oxidase that triggers respiratory burst. Respiratory burst is a
mechanism by which phagocytic cells generate oxidants from oxygen. Hyperbaric
oxygen has been shown to stimulate respiratory burst activity.2*2> Micromolar con-
centrations of hydrogen peroxide promote vascular endothelial growth factor
(VEGF) expression in keratinocytes.23 VEGTF is an endothelial-cell-specific mito-
gen. The finding that VEGF was potent and specific for vascular endothelial cells
and, unlike basic fetal growth factor freely diffusible, led to the hypothesis that this
molecule plays a unique role in the regulation of physiological angiogenesis.

Wound healing occurs in “phases.” The main phases of wound healing include
coagulation, which begins immediately after injury; inflammation, which initiates
shortly thereafter; a migratory and proliferative process, which begins within days
and includes the major processes of healing; and a remodeling process, which may
last for up to a year and is responsible for scar tissue formation and development of
new skin.2’ In the inflammation phase, one of the first lines of defense are migrating
polymorphonuclear cells (PMNs) which locate, identify, phagocytize, kill, and
digest microorganisms and eliminate wound debris. These cells, through their char-
acteristic “respiratory burst” activity, produce O, (superoxide anion radical), which
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FIGURE 1. Devices for topical oxygen therapy.
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is well known to be critical for defense against bacteria and other pathogens.?8

Superoxide is rapidly converted to membrane permeable form, H,O,, by superoxide
dismutase activity or even spontaneously. Release of H,O, may promote formation
of other oxidants that are more stable (longer half-life) including, hypochlorous acid,
chloramines, and aldehydes. The production of oxidants at the wound site is not
restricted to neutrophils alone but may be also produced by macrophages, which
appear and orchestrate a “long term” response to injured cells subsequent to the
acute response. Taken together, this suggests that the wound site is rich in oxidants
along with their derivatives such as chloramine, mostly contributed by neutrophils
and macrophages. A clinically relevant model documented treatment of ischemia-
induced ulcers with hydrogen peroxide cream and reported enhanced cutaneous
blood recruitment not only to ulcers and adjacent sites, but also to distant sites.??
Oxidants serve as cellular messengers that drive numerous aspects of molecular and
cell biology.3%-3! While it is plausible that this information is of outstanding signifi-
cance to the practice of oxygen therapy, at present it remains largely unexplored.

Consistent with the hypothesis that wound-related oxidants support the healing
process, clearing oxidants from the wound environment of old rats during the early
inflammation phase of the healing process decreased blood flow.32 Exposure to mild
concentrations of oxidants triggers expression of antioxidant defense proteins such
as heme oxygenase 133 and keratinocyte growth factor3* that are likely to protect the
regenerating tissue against oxidant damage. Some would argue against the role of
oxidants in wound healing. For example, Senel et al. have claimed that oxygen free
radicals may be detrimental to ischemic skin wound healing.> Interpretation of
results reported in this study requires careful consideration. It has been shown that
treatment of the wound by allopurinol or superoxide dismutase increased tensile
strength of the healing tissue. Allopurinol inhibits xanthine oxidase, a source of
superoxide in endothelial cells, but does not have any effect on phagocytic or non-
phagocytic oxidases that are known to be responsible for the respiratory burst phe-
nomenon. Furthermore, superoxide dismutase accelerates the formation of hydrogen
peroxide from superoxide. Hydrogen peroxide is a potent oxidant. Therefore, it is
indeed plausible that the reported effects of superoxide dismutase were mediated by
hydrogen peroxide. The concentration of oxidants in question is critically important.
Although at micromolar concentrations oxidants such as hydrogen peroxide may
favorably influence signal transduction processes that support healing, at millimolar
concentrations hydrogen peroxide is likely to overwhelm the antioxidant defense
system of the healing tissue® and trigger indiscriminate tissue damage thereby
delaying healing.3’

The effects of many growth factors and cytokines, recognized as key elements of
the wound healing process, are mediated by oxidants. TGF-B1 is a pleiotropic cytok-
ine that plays a key role in wound healing. Some fibrogenic actions of TGF-B1, nec-
essary for extracellular matrix production, are mediated via formation of hydrogen
peroxide.38 Oxidants also promote fibroblast migration and proliferation.39’40
Hydrogen peroxide generated by phagocytic cells in the wound site has also been
shown to up-regulate endothelial-cell heparin-binding EGF mRNA, another key
player in promoting wound healing.*! Oxidants generated in response to Racl acti-
vation have been shown to be essential for nuclear factor kB—dependent trans-
criptional regulation of interleukin-la, which, in an autocrine manner, induced
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collagenase-1 gene expression. Remodeling of the extracellular matrix and conse-
quent alterations of integrin-mediated adhesion and cytoarchitecture are central to
wound healing. It has been proposed that activation of Racl may lead to altered gene
regulation and alterations in cellular morphogenesis, migration, and invasion.*?
Recent studies in our laboratory provide the first evidence that Racl gene transfer
accelerates contraction and healing of murine excisional dermal wounds (not shown).

Platelet-derived growth factor (PDGF), commonly used in clinical wound thera-
py, is found as PDGF-A, AB, and BB. It exerts its effects on cells by binding to one
of two membrane-bound receptors, the a-receptor or the B-receptor. Both PDGF-BB
and TGF-B1 alone are more effective than hyperbaric oxygen treatment by itself in
accelerating the impaired wound healing produced by ischemia. In a recent study,
acutely ischemic wounds in rabbit ears were treated with saline or PDGF-BB and
then animals were treated with hyperbaric air or oxygen at 2 atm abs (202.6 kPa).
Hyperbaric air was without significant effect compared with control rabbits breath-
ing air at ambient pressure. Combined treatment with hyperbaric oxygen plus
PDGF-BB was synergistic in up-regulating mRNA for PDGF-f3 receptor. Exposure
to 85% oxygen has been shown to potently increase the expression of both the
PDGF-B gene and the PDGF B-type receptor.43 These findings lay a firm rationale
to test the therapeutic significance of PDGF-BB and oxygen in synergism. The
results of a preliminary clinical study support the use of combined therapy using top-
ical becaplermin (trade name for PDGF) and hyperbaric oxygen therapy as a means
of successfully treating the chronic diabetic ulcer patient with deficient nitric oxide
production and local wound hypoxia.?

The hypothesis that cytokines such as PDGF and oxygen may function synergis-
tically to promote wound healing is in line with predictions that could be made from
cell biology studies. Cytokines such as PDGF, epidermal growth factor (EGF), tumor
necrosis factor (TNF)-o. or interleukin (IL)-1B generate oxidants upon binding to
their receptors.** It has been specifically demonstrated that such oxidants play a key
role in driving cellular signal transduction pathways of PDGF-treated cells. Inhibi-
tors of oxidant production inhibit PDGF-induced activation of cell signaling.*> Con-
sistently, in a separate study over-expression of the antioxidant-enzyme superoxide
dismutase blocked the PDGF-induced expression of genes and gene products. It was
shown that nitric oxide synthase induced by PDGF is mediated in part by production
of superoxide.#0 Pretreatment with catalase (decomposes hydrogen peroxide) com-
pletely abrogated hydrogen peroxide-induced PDGF receptor and c-Src tyrosine
phosphorylation, suggesting that PDGF receptors send mitogenic signals utilizing
oxidants as messengers.*’ Endothelial cells are not only capable of sensing oxygen
tension, but are also able to discriminate and respond to even small differences in
oxygen tension resulting in dramatic up-regulation of the PDGF-B chain gene.48

Nitric Oxide

A supporting role for reactive species in wound healing has been evident from
numerous studies focusing on nitric oxide. While some questions have been raised,*’
it would be fair to summarize that nitric oxide produced during the healing process
clearly promotes wound repair.’? The earliest evidence demonstrating that nitric
oxide may promote wound healing was presented only five years ago when it was
demonstrated that nitric oxide synthesis is critical to wound collagen accumulation
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and acquisition of mechanical strength.3! Nitric oxide is expected to promote wound
angiogenesis by inducing the expression of vascular endothelial growth factor.>?
Using knock-out mice and gene transfer approaches it has been established that both
endothelial nitric oxide synthase®> as well as inducible nitric oxide synthase play a
key role in wound repair.S4

HERBAL ANTIOXIDANTS IN WOUND HEALING

The search for “natural remedies” for a commonly occurring disorder such as
wounds has drawn attention to herbals. From ancient times, herbals have been rou-
tinely used to treat wounds, and in many cultures their use in traditional medicine
has persisted to the present. While it is possible that some time-tested herbal reme-
dies are indeed effective, it seems to be often the case that the patient knows more
about this form of medicine than the physician! In other words, lack of detailed
mechanism-oriented and hypothesis-driven research poses a major drawback to
the use of herbal medicine to treat wounds. For example, Aloe vera is commonly
used for a wide range of dermatological applications including wound healing.
The efficacy of Aloe vera in treating wound healing remains to be categorically
established.>® With the renewed interest in herbal cures, it is time to revisit the field.

There are numerous herbal derivatives that have been tried for their ability to pro-
mote wound healing. A complete discussion of these derivatives is beyond the scope
of this work. While most studies are purely observational in nature, a few others have
attempted to address the underlying mechanisms. For example, the polysaccharide-
rich Angelica sinensis has a direct mucosal healing effect on gastric epithelial cells
by increasing ornithine decarboxylase and c-Myc expression.’® A Eucommia
ulmoides Oliver leaf extract has been shown to favorably influence collagen metab-
olism and support wound healing. Oral administration of this herbal derivative accel-
erated granuloma maturation and the energy was supplied from fatty acid
metabolism.>’ Eupolin extract increases fibroblast and endothelial cell growth.>8
The extract increases expression of several components of the adhesion complex and
fibronectin by human keratinocytes. Eupolin reportedly stimulates the expression of
many proteins of the adhesion complex and fibronectin by human keratinocytes. The
adhesion complex proteins are thought to be essential to stabilize epithelium and this
effect could contribute to the clinical efficacy of Eupolin in healing.59

Proanthocyanidins or condensed tannins are a group of biologically active
polyphenolic bioflavonoids that are synthesized by many plants. Proanthocyanidins
and other tannins are known to facilitate wound healing.%%-0 The mode of action,
however, remains unclear. Grape seed proanthocyanidin extract, has been reported
to have various clinically relevant redox-active properties.>® It was recently
observed that natural extracts derived from grape seeds facilitate oxidant-induced
VEGEF expression in keratinocytes. These results suggested that grape-seed—derived
natural extracts may have beneficial effects in promoting dermal wound healing and
other related skin pathologies.23 Using a ribonuclease protection assay (RPA), the
ability of GSPE to regulate oxidant-induced changes in several angiogenesis-related
genes has been studied. While mRNA responses were studied using RPA, VEGF pro-
tein release from cells to the culture medium was studied using ELISA. Pretreatment
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of HaCaT keratinocytes with GSPE up-regulated both hydrogen peroxide as well as
TNFo-induced VEGF expression and release.?? Studies with VEGF promoter linked
to a luciferase reporter showed that the herbal extract influenced the transcriptional
control of inducible VEGF expression. In a murine model of dermal excisional
wound, a combination of grape seed extract and 5,000ppm resveratrol markedly
accelerated wound contraction and healing (not shown). In a previous section of this
article, we have discussed how oxidants could support the wound healing process.
Herbal extracts such as the grape seed extract are highly rich in antioxidants. This
leads to an apparent paradox. How can both oxidants as well as antioxidants promote
healing? While a definitive answer requires further experimentation, it should be
noted that antioxidants do tend to possess signal transduction regulatory properties
that may or may not be linked to their ability to detoxify oxidants.30-31:67-69 1 addi-
tion, under certain conditions such as a strong oxidizing environment lacking the
support to regenerate (reduce) oxidized antioxidants, some antioxidants may assume
the characteristics of a pro-oxidant.”0-73

CONCLUSION

Recent advances in the molecular and cellular aspects of redox biology positions
us well to revisit the apparently outstanding benefit of oxygen therapy in wound
healing. It is likely that reactive derivatives of molecular oxygen, oxidants, for exam-
ple, serve as cellular messengers to support the healing process. Strategies to manip-
ulate the oxygen/oxidant environment in the wound are likely to be of outstanding
significance.
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